Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
One Health ; 18: 100688, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317850
2.
Molecules ; 28(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005316

RESUMO

Cancer is a major global public health problem with high morbidity. Depression is known to be a high-frequency complication of cancer diseases that decreases patients' life quality and increases the mortality rate. Therefore, antidepressants are often used as a complementary treatment during cancer therapy. During recent decades, various studies have shown that the combination of antidepressants and anticancer drugs increases treatment efficiency. In recent years, further emerging evidence has suggested that the modulation of autophagy serves as one of the primary anticancer mechanisms for antidepressants to suppress tumor growth. In this review, we introduce the anticancer potential of antidepressants, including tricyclic antidepressants (TCAs), tetracyclic antidepressants (TeCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). In particular, we focus on their autophagy-modulating mechanisms for regulating autophagosome formation and lysosomal degradation. We also discuss the prospect of repurposing antidepressants as anticancer agents. It is promising to repurpose antidepressants for cancer therapy in the future.


Assuntos
Antidepressivos , Neoplasias , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina , Antidepressivos Tricíclicos , Norepinefrina , Autofagia , Neoplasias/tratamento farmacológico
3.
Molecules ; 27(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36234977

RESUMO

Cancer is a serious disease with high mortality and morbidity worldwide. Natural products have served as a major source for developing new anticancer drugs during recent decades. Magnolol, a representative natural phenolic lignan isolated from Magnolia officinali, has attracted considerable attention for its anticancer properties in recent years. Accumulating preclinical studies have demonstrated the tremendous therapeutic potential of magnolol via a wide range of pharmacological mechanisms against cancer. In this review, we summarized the latest advances in preclinical studies investigating anticancer properties of magnolol and described the important signaling pathways explaining its underlying mechanisms. Magnolol was capable of inhibiting cancer growth and metastasis against various cancer types. Magnolol exerted anticancer effects through inhibiting proliferation, inducing cell cycle arrest, provoking apoptosis, restraining migration and invasion, and suppressing angiogenesis. Multiple signaling pathways were also involved in the pharmacological actions of magnolol against cancer, such as PI3K/Akt/mTOR signaling, MAPK signaling and NF-κB signaling. Based on this existing evidence summarized in the review, we have conclusively confirmed magnolol had a multi-target anticancer effect against heterogeneous cancer disease. It is promising to develop magnolol as a drug candidate for cancer therapy in the future.


Assuntos
Antineoplásicos , Produtos Biológicos , Lignanas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Produtos Biológicos/farmacologia , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/uso terapêutico , Lignanas/farmacologia , Lignanas/uso terapêutico , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
4.
Molecules ; 27(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36235146

RESUMO

Conotoxins constitute a treasury of drug resources and have attracted widespread attention. In order to explore biological candidates from the marine cone snail, we isolated and identified three novel conopeptides named as Vi14b, Vi002, Vi003, three conotoxin variants named as Mr3d.1, Mr3e.1, Tx3a.1, and three known conotoxins (Vi15a, Mr3.8 and TCP) from crude venoms of Conus virgo, Conus marmoreus and Conus texile. Mr3.8 (I-V, II-VI, III-IV) and Tx3a.1 (I-III, II-VI, IV-V) both showed a novel pattern of disulfide connectivity, different from that previously established for the µ- and ψ-conotoxins. Concerning the effect on voltage-gated sodium channels, Mr3e.1, Mr3.8, Tx3a.1, TCP inhibited Nav1.4 or Nav1.8 by 21.51~24.32% of currents at semi-activated state (TP2) at 10 µmol/L. Certain anti-ovarian cancer effects on ID-8 cells were exhibited by Tx3a.1, Mr3e.1 and Vi14b with IC50 values of 24.29 µM, 54.97 µM and 111.6 µM, respectively. This work highlights the role of conotoxin libraries in subsequent drug discovery for ovarian cancer treatment.


Assuntos
Conotoxinas , Caramujo Conus , Neoplasias , Animais , Conotoxinas/farmacologia , Caramujo Conus/genética , DNA Complementar , Dissulfetos , Venenos de Moluscos
5.
Carbohydr Polym ; 289: 119414, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483835

RESUMO

Around 100 Streptococcus pneumonia (Spn) serotypes have been discovered, 90% of the severe diseases in children are caused by 13 serotypes. With the success of pneumococcal bacterial polysaccharide conjugate vaccines (PCVs), the burden of pneumococcal disease has been significantly reduced. Serotype 31 is a non-vaccine serotype and has increased in prevalence. By using Nuclear Magnetic Resonance (NMR) as the primary tool, we report the revised serotype 31 polysaccharide (s-31-ps) structure as [→3)-ß-D-Galf-(5/6-OAc)-(1 â†’ 3)-ß-D-Galp-(1 â†’ 3)-ß-L-Rhap-(2-OAc)-(1 â†’ 2)-α-L-Rhap-(1 â†’ 4)-ß-D-GlcpA-(1→]n. Furthermore, the reductive amination-conjugate of serotype 31 polysaccharide and cross reacting material (CRM197) protein was prepared in organic solvent (N,N-dimethylformamide, DMF) instead of water. The reaction is faster, and the DMF conjugate elicited comparable immune responses with the aqueous conjugate. S-31-ps conjugate vaccine has the potential of being included in the next-generation PCV vaccines.


Assuntos
Vacinas Pneumocócicas , Polissacarídeos Bacterianos , Proteínas de Bactérias , Criança , Humanos , Imunidade , Sorogrupo , Vacinas Conjugadas
6.
Adv Sci (Weinh) ; 8(22): e2101176, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34605222

RESUMO

Most breast cancers at an advanced stage exhibit an aggressive nature, and there is a lack of effective anticancer options. Herein, the development of patient-derived organoids (PDOs) is described as a real-time platform to explore the feasibility of tailored treatment for refractory breast cancers. PDOs are successfully generated from breast cancer tissues, including heavily treated specimens. The microtubule-targeting drug-sensitive response signatures of PDOs predict improved distant relapse-free survival for invasive breast cancers treated with adjuvant chemotherapy. It is further demonstrated that PDO pharmaco-phenotyping reflects the previous treatment responses of the corresponding patients. Finally, as clinical case studies, all patients who receive at least one drug predicate to be sensitive by PDOs achieve good responses. Altogether, the PDO model is developed as an effective platform for evaluating patient-specific drug sensitivity in vitro, which can guide personal treatment decisions for breast cancer patients at terminal stage.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Quimioterapia Adjuvante/métodos , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos , Feminino , Humanos
7.
Nat Commun ; 12(1): 3046, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031426

RESUMO

Nasopharyngeal carcinoma (NPC) is a malignant head and neck cancer type with high morbidity in Southeast Asia, however the pathogenic mechanism of this disease is poorly understood. Using integrative pharmacogenomics, we find that NPC subtypes maintain distinct molecular features, drug responsiveness, and graded radiation sensitivity. The epithelial carcinoma (EC) subtype is characterized by activations of microtubule polymerization and defective mitotic spindle checkpoint related genes, whereas sarcomatoid carcinoma (SC) and mixed sarcomatoid-epithelial carcinoma (MSEC) subtypes exhibit enriched epithelial-mesenchymal transition (EMT) and invasion promoting genes, which are well correlated with their morphological features. Furthermore, patient-derived organoid (PDO)-based drug test identifies potential subtype-specific treatment regimens, in that SC and MSEC subtypes are sensitive to microtubule inhibitors, whereas EC subtype is more responsive to EGFR inhibitors, which is synergistically enhanced by combining with radiotherapy. Through combinational chemoradiotherapy (CRT) screening, effective CRT regimens are also suggested for patients showing less sensitivity to radiation. Altogether, our study provides an example of applying integrative pharmacogenomics to establish a personalized precision oncology for NPC subtype-guided therapies.


Assuntos
Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Farmacogenética/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/patologia , Medicina de Precisão , Transcriptoma , Sequenciamento do Exoma
8.
Theranostics ; 11(4): 1672-1689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33408774

RESUMO

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and devastating cancers without effective treatments. Amplified in breast cancer 1 (AIB1) is a member of the steroid receptor coactivator family that mediates the transcriptional activities of nuclear receptors. While AIB1 is associated with the initiation and progression of multiple cancers, the mechanism by which AIB1 contributes to PDAC progression remains unknown. In this study, we aimed to explore the role of AIB1 in the progression of PDAC and elucidate the underlying mechanisms. Methods: The clinical significance and mRNA level of AIB1 in PDAC were studied by database analysis. To demonstrate whether AIB1 mediates the malignant features of PDAC cells, namely, proliferation, migration, invasion, we performed real-time PCR and Western blot analysis, established xenograft models and used in vivo metastasis assay. With insights into the mechanism of AIB1, we performed RNA sequencing (Seq), ChIP-Seq, luciferase reporter assays and pull-down assays. Furthermore, we analyzed the relationship between AIB1 expression and its target expression in PDAC cells and patients and explored whether PDAC cells with high AIB1 levels are sensitive to inhibitors of its target. Results: We found that AIB1 was significantly upregulated in PDAC and associated with its malignancy. Silencing AIB1 impaired hedgehog (Hh) activation by reducing the expression of smoothened (SMO), leading to cell cycle arrest and the inhibition of PDAC cell proliferation. In addition, AIB1, via upregulation of integrin αv (ITGAV) expression, promoted extracellular matrix (ECM) signaling, which played an important role in PDAC progression. Further studies showed that AIB1 preferably bound to AP-1 related elements and served as a coactivator for enhancing the transcriptional activity of MafB, which promoted the expression of SMO and ITGAV. PDAC cells with high AIB1 levels were sensitive to Hh signaling inhibitors, suggesting that blocking Hh activation is an effective treatment against PDAC with high AIB1 expression. Conclusions: These findings reveal that AIB1 is a crucial oncogenic regulator associated with PDAC progression via Hh and ECM signaling and suggest potential therapeutic targets for PDAC treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/secundário , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Movimento Celular , Proliferação de Células , Proteínas Hedgehog/genética , Humanos , Masculino , Camundongos , Camundongos SCID , Coativador 3 de Receptor Nuclear/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
9.
Nat Commun ; 11(1): 3256, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591500

RESUMO

BRCA1 mutation carriers have a higher risk of developing triple-negative breast cancer (TNBC), which is a refractory disease due to its non-responsiveness to current clinical targeted therapies. Using the Sleeping Beauty transposon system in Brca1-deficient mice, we identified 169 putative cancer drivers, among which Notch1 is a top candidate for accelerating TNBC by promoting the epithelial-mesenchymal transition (EMT) and regulating the cell cycle. Activation of NOTCH1 suppresses mitotic catastrophe caused by BRCA1 deficiency by restoring S/G2 and G2/M cell cycle checkpoints, which may through activation of ATR-CHK1 signalling pathway. Consistently, analysis of human breast cancer tissue demonstrates NOTCH1 is highly expressed in TNBCs, and the activated form of NOTCH1 correlates positively with increased phosphorylation of ATR. Additionally, we demonstrate that inhibition of the NOTCH1-ATR-CHK1 cascade together with cisplatin synergistically kills TNBC by targeting the cell cycle checkpoint, DNA damage and EMT, providing a potent clinical option for this fatal disease.


Assuntos
Proteína BRCA1/deficiência , Carcinogênese/patologia , Receptor Notch1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Alelos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/metabolismo , Morte Celular , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/metabolismo , Elementos de DNA Transponíveis/genética , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Knockout , Mitose , Mutação/genética , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/genética
10.
Mar Drugs ; 18(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272701

RESUMO

The α9-containing nicotinic acetylcholine receptor (nAChR) is increasingly emerging as a new tumor target owing to its high expression specificity in breast cancer. αO-Conotoxin GeXIVA is a potent antagonist of α9α10 nAChR. Nevertheless, the anti-tumor effect of GeXIVA on breast cancer cells remains unclear. Cell Counting Kit-8 assay was used to study the cell viability of breast cancer MDA-MD-157 cells and human normal breast epithelial cells, which were exposed to different doses of GeXIVA. Flow cytometry was adopted to detect the cell cycle arrest and apoptosis of GeXIVA in breast cancer cells. Migration ability was analyzed by wound healing assay. Western blot (WB), quantitative real-time PCR (QRT-PCR) and flow cytometry were used to determine expression of α9-nAChR. Stable MDA-MB-157 breast cancer cell line, with the α9-nAChR subunit knocked out (KO), was established using the CRISPR/Cas9 technique. GeXIVA was able to significantly inhibit the proliferation and promote apoptosis of breast cancer MDA-MB-157 cells. Furthermore, the proliferation of breast cancer MDA-MB-157 cells was inhibited by GeXIVA, which caused cell cycle arrest through downregulating α9-nAChR. GeXIVA could suppress MDA-MB-157 cell migration as well. This demonstrates that GeXIVA induced a downregulation of α9-nAChR expression, and the growth of MDA-MB-157 α9-nAChR KO cell line was inhibited as well, due to α9-nAChR deletion. GeXIVA inhibits the growth of breast cancer cell MDA-MB-157 cells in vitro and may occur in a mechanism abolishing α9-nAChR.


Assuntos
Proliferação de Células/efeitos dos fármacos , Conotoxinas/farmacologia , Antagonistas Nicotínicos/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Receptores Nicotínicos/deficiência , Receptores Nicotínicos/metabolismo
11.
Adv Sci (Weinh) ; 7(6): 1903616, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195105

RESUMO

The breast cancer susceptibility gene 1 (BRCA1) is a major tumor suppressor gene and is most frequently mutated in hereditary breast cancer. BRCA1 plays a critical role in many biological processes, especially maintaining genomic stability in the nucleus, yet its role in the cytoplasm remains elusive. Here, it is revealed that BRCA1 maintains a healthy mitochondrial network through regulating mitochondrial dynamics, including fission and fusion. BRCA1 deficiency causes dysfunctional mitochondrial dynamics through increased expression of mitofusin1/2. With mitochondrial stress, BRCA1 is recruited to the mitochondrial outer membrane, where it plays an essential role in maintaining a healthy mitochondrial network. Consequently, BRCA1 deficiency impairs stress-induced mitophagy through blocking ataxia-telangiectasia mutated (ATM)-AMP-activated protein kinase (AMPK)-Dynamin-related protein 1 (DRP1)-mediated mitochondrial fission and triggers NLRP3 inflammasome activation, which creates a tumor-associated microenvironment, thereby facilitating tumor proliferation and metastasis. It is further shown that inflammasome inhibition can prevent tumor recurrence and metastasis. This study uncovers an important role of BRCA1 in regulating mitophagy and suggests a therapeutic approach for fighting this deadly disease.

12.
Inflammopharmacology ; 28(1): 289-297, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31446590

RESUMO

Rhynchosia minima root, a folk herbal medicine in southern China, is used to relieve itch and swelling. In this study, we examined the anti-inflammatory property of an ethanol fraction (EEF6) from R. minima root on lipopolysaccharide (LPS)-induced RAW 264.7 cells, as well as its underlying mechanism. The compound composition of EEF6 was determined by high-performance liquid chromatography-mass spectrometry. The result showed that five flavonoids compounds, 2',4',5,7-tetrahydroxyisoflavone, genistein-8-C-glucopyranoside, tricin, genistein, and daidzein, were identified in EEF6. In addition, EEF6 exhibited potent anti-inflammatory ability against LPS-stimulated RAW 264.7 cells via MAPK/NF-κB signaling pathways by decreasing the secretion of nitric oxide (NO), interleukin (IL)-6, TNF-α, and monocyte chemotactic protein (MCP)-1, inhibiting the translocation of p65 from cytoplasm to nucleus, and suppressing the phosphorylation of ERK, JNK, and p38. These results indicated that EEF6 could be a promising ingredient for inflammation management.


Assuntos
Anti-Inflamatórios/farmacologia , Fabaceae/química , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Raízes de Plantas/química , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Citocinas/metabolismo , Genisteína/farmacologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-6/metabolismo , Isoflavonas/farmacologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação/efeitos dos fármacos , Células RAW 264.7 , Fator de Necrose Tumoral alfa/metabolismo
13.
J Pharm Biomed Anal ; 154: 312-320, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29567574

RESUMO

An herb commonly contains hundreds of constituents. Identification of bioactive compound(s) in each herb using conventional approaches is usually inefficient and eco-unfriendly. In this study, we aimed to fast identify anticancer compounds in Forsythiae Fructus using UPLC/MS-based metabolomics analysis. We firstly fractionated Forsythiae Fructus crude extracts with organic solvents of different polarity, then the chemical profile of each fraction was analyzed by UPLC/Q-TOF/MS, and the anticancer activity profiles of all fractions were determined by MTT assay. Next, orthogonal projections to latent structures discriminant analysis (OPLS-DA) was applied to discriminate fractions with different anticancer activity to determine the compound(s) that contributes most to the anticancer activity. Betulinic acid was then identified to be the most potent anticancer compound in Forsythiae Fructus. Its predicted anticancer activity was confirmed by MTT assay. Taken together, our results demonstrated that the present integrated metabolomics strategy could be used for fast identification of anticancer compound(s) in herb extracts or other complex mixtures of chemicals.


Assuntos
Antineoplásicos/análise , Antineoplásicos/química , Forsythia/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Análise Discriminante , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Frutas/química , Melanoma Experimental , Metabolômica/métodos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos
14.
Am J Chin Med ; 45(7): 1513-1536, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28946767

RESUMO

Forsythiae Fructus, Lianqiao in Chinese, is one of the most fundamental herbs in Traditional Chinese Medicine. Both green Forsythia (GF) and ripe Forsythia (RF) are referred to Forsythiae Fructus in medicinal applications. In most cases, they are used without distinction. In this study, a metabolomics approach was performed to compare componential differences of two Forsythiae Fructus aqueous extracts subtypes. Principal component analysis (PCA) score plots from the UPLC-MS data showed clear separation between the two subtypes, indicating there are significant differences in the chemical components between GF and RF. Meanwhile, the anticancer activity of them was also compared. GF exhibited much stronger antitumor activity than RF against B16-F10 murine melanoma both in vitro and in vivo. 15 chemical compounds were identified as specific markers for distinguishing GF and RF. Among these marker compounds, forsythoside I, forsythoside A, forsythoside E and pinoresinol were demonstrated to be key important active compounds that account for the different anticancer efficacies of GF and RF. Our data suggest that GF and RF should be distinctively used in clinical applications, particularly in the anticancer formulas, in which GF should be preferentially prescribed.


Assuntos
Antineoplásicos Fitogênicos , Forsythia/química , Frutas/química , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Fitoterapia , Extratos Vegetais/química , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Animais , Catecóis/isolamento & purificação , Catecóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Dissacarídeos/isolamento & purificação , Dissacarídeos/farmacologia , Feminino , Forsythia/classificação , Furanos/isolamento & purificação , Furanos/farmacologia , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Lignanas/isolamento & purificação , Lignanas/farmacologia , Espectrometria de Massas/métodos , Metabolômica , Camundongos Endogâmicos C57BL , Extratos Vegetais/classificação , Células Tumorais Cultivadas , Água
15.
Int J Biol Sci ; 13(7): 852-867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28808418

RESUMO

Fatty liver diseases, which are commonly associated with high-fat/calorie diet, heavy alcohol consumption and/or other metabolic disorder causes, lead to serious medical concerns worldwide in recent years. It has been demonstrated that metabolic homeostasis disruption is most likely to be responsible for this global epidemic. Sirtuins are a group of conserved nicotinamide adenine dinucleotide (NAD+) dependent histone and/or protein deacetylases belonging to the silent information regulator 2 (Sir2) family. Among seven mammalian sirtuins, sirtuin 1 (SIRT 1) is the most extensively studied one and is involved in both alcoholic and nonalcoholic fatty liver diseases. SIRT1 plays beneficial roles in regulating hepatic lipid metabolism, controlling hepatic oxidative stress and mediating hepatic inflammation through deacetylating some transcriptional regulators against the progression of fatty liver diseases. Here we summarize the latest advances of the biological roles of SIRT1 in regulating lipid metabolism, oxidative stress and inflammation in the liver, and discuss the potential of SIRT1 as a therapeutic target for treating alcoholic and nonalcoholic fatty liver diseases.


Assuntos
Fígado Gorduroso/metabolismo , Sirtuína 1/metabolismo , Animais , Fígado Gorduroso/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sirtuína 1/genética
16.
Sci Rep ; 7: 41082, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112228

RESUMO

Hormesis is an adaptive response of living organisms to a moderate stress. However, its biomedical implication and molecular mechanisms remain to be intensively investigated. Panaxatriol saponins (PTS) is the major bioactive components extracted from Panax notoginseng, a widely used herbal medicine for cerebrovascular diseases. This study aims to examine the hormetic and neuroprotective effects of PTS in PC12 cells and zebrafish Parkinson's disease (PD) models. Our results demonstrated that PTS stimulated PC12 cell growth by about 30% at low doses, while PTS at high doses inhibited cell growth, which is a typical hormetic effect. Moreover, we found that low dose PTS pretreatment significantly attenuated 6-OHDA-induced cytotoxicity and up-regulated PI3K/AKT/mTOR cell proliferation pathway and AMPK/SIRT1/FOXO3 cell survival pathway in PC12 cells. These results strongly suggested that neuroprotective effects of PTS may be attributable to the hormetic effect induced by PTS through activating adaptive response-related signaling pathways. Notably, low dose PTS could significantly prevent the 6-OHDA-induced dopaminergic neuron loss and improve the behavior movement deficiency in zebrafish, whereas relative high dose PTS exhibited neural toxicity, further supporting the hormetic and neuroprotective effects of PTS. This study indicates that PTS may have the potential in the development of future therapeutic medicines for PD.


Assuntos
Ginsenosídeos/administração & dosagem , Hormese/efeitos dos fármacos , Saponinas/administração & dosagem , Peixe-Zebra/genética , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/química , Hormese/genética , Neuroproteção/efeitos dos fármacos , Células PC12 , Panax notoginseng/química , Fosfatidilinositol 3-Quinases/genética , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Saponinas/química , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/genética , Serina-Treonina Quinases TOR/genética
17.
Redox Biol ; 11: 1-11, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27835779

RESUMO

Berberine (BBR) is a renowned natural compound that exhibits potent neuroprotective activities. However, the cellular and molecular mechanisms are still unclear. Hormesis is an adaptive mechanism generally activated by mild oxidative stress to protect the cells from further damage. Many phytochemicals have been shown to induce hormesis. This study aims to investigate whether the neuroprotective activity of BBR is mediated by hormesis and the related signaling pathways in 6-OHDA-induced PC12 cells and zebrafish neurotoxic models. Our results demonstrated that BBR induced a typical hormetic response in PC12 cells, i.e. low dose BBR significantly increased the cell viability, while high dose BBR inhibited the cell viability. Moreover, low dose BBR protected the PC12 cells from 6-OHDA-induced cytotoxicity and apoptosis, whereas relatively high dose BBR did not show neuroprotective activity. The hormetic and neuroprotective effects of BBR were confirmed to be mediated by up-regulated PI3K/AKT/Bcl-2 cell survival and Nrf2/HO-1 antioxidative signaling pathways. In addition, low dose BBR markedly mitigated the 6-OHDA-induced dopaminergic neuron loss and behavior movement deficiency in zebrafish, while high dose BBR only slightly exhibited neuroprotective activities. These results strongly suggested that the neuroprotection of BBR were attributable to the hormetic mechanisms via activating cell survival and antioxidative signaling pathways.


Assuntos
Antioxidantes/administração & dosagem , Berberina/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson Secundária/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Heme Oxigenase-1/genética , Hormese/efeitos dos fármacos , Hormese/genética , Humanos , Fator 2 Relacionado a NF-E2/genética , Proteína Oncogênica v-akt/genética , Oxidopamina/toxicidade , Células PC12 , Doença de Parkinson Secundária/genética , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
18.
Sci Rep ; 6: 39415, 2016 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-27991567

RESUMO

Metabolomics is a comprehensive assessment of endogenous metabolites of a biological system in a holistic context. In this study, we evaluated the in vivo anti-melanoma activity of aqueous extract of Forsythiae Fructus (FAE) and globally explored the serum metabolome characteristics of B16-F10 melanoma-bearing mice. UPLC/Q-TOF MS combined with pattern recognition approaches were employed to examine the comprehensive metabolic signatures and differentiating metabolites. The results demonstrated that FAE exhibited remarkable antitumor activity against B16-F10 melanoma in C57BL/6 mice and restored the disturbed metabolic profile by tumor insult. We identified 17 metabolites which were correlated with the antitumor effect of FAE. Most of these metabolites are involved in glycerophospholipid metabolisms. Notably, several lysophosphatidylcholines (LysoPCs) significantly decreased in tumor model group, while FAE treatment restored the changes of these phospholipids to about normal condition. Moreover, we found that lysophosphatidylcholine acyltransferase 1 (LPCAT1) and autotaxin (ATX) were highly expressed in melanoma, and FAE markedly down-regulated their expression. These findings indicated that modulation of glycerophospholipid metabolisms may play a pivotal role in the growth of melanoma and the antitumor activity of FAE. Besides, our results suggested that serum LysoPCs could be potential biomarkers for the diagnosis and prognosis of melanoma and other malignant tumors.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Frutas/química , Glicerofosfolipídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Metaboloma/efeitos dos fármacos , Oleaceae/química , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Antineoplásicos/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Regulação para Baixo/efeitos dos fármacos , Feminino , Lisofosfatidilcolinas/farmacologia , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo , Espectrometria de Massas em Tandem/métodos , Água/química
19.
Am J Chin Med ; 44(5): 1043-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27430915

RESUMO

Forsythiae Fructus, the fruits of Forsythia suspensa (Thunb.) Vahl, Lianqiao in Chinese, is one of the most fundamental herbs in traditional Chinese medicine (TCM). It is a typical heat-clearing and detoxicating herb, according to TCM theory. In this study, we investigated the antitumor effect of Forsythiae Fructus aqueous extract (FAE) on B16-F10 melanoma cells in vivo. The transplanted B16-F10 melanoma in C57BL/6 mice was established and used for the evaluation of the in vivo antitumor effect of FAE. FAE strongly inhibited the growth of B16-F10 cells in vitro and the tumor in vivo. The survival time of tumor-bearing mice was significantly prolonged by FAE. FAE inhibited cancer cell proliferation and angiogenesis in the tumor, as indicated by the decreased expressions of Ki67 and CD31. The levels of ROS, MDA, TNF-[Formula: see text] and IL-6 decreased, while GSH increased in the FAE treatment group, indicating FAE possesses strong anti-oxidative and anti-inflammatory activity. The expression of anti-oxidant proteins Nrf-2 and HO-1, tumor suppressors P53 and p-PTEN, and the MAPK pathways in tumor tissues were upregulated by FAE treatment. These data demonstrated that FAE exhibited strong antitumor activity against B16-F10 murine melanoma both in vitro and in vivo. The antitumor effect of FAE involved decreases in oxidative stress and inflammation in the tumor, which is closely related to the heat-clearing and detoxicating properties of FAE.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antineoplásicos/administração & dosagem , Antioxidantes/administração & dosagem , Medicamentos de Ervas Chinesas/administração & dosagem , Forsythia/química , Heme Oxigenase-1/metabolismo , Melanoma Experimental/tratamento farmacológico , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Heme Oxigenase-1/genética , Humanos , Melanoma Experimental/metabolismo , Melanoma Experimental/fisiopatologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/genética
20.
Sci Rep ; 6: 26064, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263652

RESUMO

Curcumin (CUR) and berberine (BBR) are renowned natural compounds that exhibit potent anticancer activities through distinct molecular mechanisms. However, the anticancer capacity of either CUR or BBR is limited. This prompted us to investigate the chemopreventive potential of co-treatment of CUR and BBR against breast cancers. The results showed that CUR and BBR in combination synergistically inhibited the growth of both MCF-7 and MDA-MB-231 breast cancer cells than the compounds used alone. Further study confirmed that synergistic anti-breast cancer activities of co-treatment of these two compounds was through inducing more apoptosis and autophagic cell death (ACD). The co-treatment-induced apoptosis was caspase-dependent and through activating ERK pathways. Our data also demonstrated that co-treatment of CUR and BBR strongly up-regulated phosphorylation of JNK and Beclin1, and decreased phosphorylated Bcl-2. Inhibition of JNK by SP600125 markedly decreased LC3-II and Beclin1, restored phosphorylated Bcl-2, and reduced the cytotoxicity induced by the two compounds in combination. These results strongly suggested that JNK/Bcl-2/Beclin1 pathway played a key role in the induction of ACD in breast cancer cells by co-treatment of CUR and BBR. This study provides an insight into the potential application of curcumin and berberine in combination for the chemoprevention and treatment of breast cancers.


Assuntos
Berberina/farmacologia , Neoplasias da Mama/tratamento farmacológico , Curcumina/farmacologia , Antineoplásicos Fitogênicos , Apoptose , Autofagia , Proteína Beclina-1/metabolismo , Processos de Crescimento Celular/efeitos dos fármacos , Quimioprevenção , Sinergismo Farmacológico , Humanos , MAP Quinase Quinase 4/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7 , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...